

Concept-based Explanations for Out-Of-Distribution Detectors

Jihye Choi ¹, Jayaram Raghuram ¹, Ryan Feng ², Jiefeng Chen ¹, Somesh Jha ¹, Atul Prakash ²

¹ University of Wisconsin-Madison ² University of Michigan

Standard Machine Learning (ML) Models

ML model in self-driving car

Training

Standard Machine Learning (ML) Models

Training

ML model in self-driving car

Testing

Out-of-distribution (OOD)

Overconfident prediction for unseen object "Buffalo"

Out-Of-Distribution Detection

Understanding OOD Detection

[Type 1] Feature Attributions

[Type 1] Feature Attributions

[Type 1] Feature Attributions

Input | Fashion-MNIST | Model | Model

[Type 1] Feature Attributions

Pixel-level activations might not be the most intuitive form of explanations for humans

[Kim et al., ICML'18; Yeh et al., NeurIPS'20]

[Kim et al., ICML'18; Yeh et al., NeurIPS'20]

Concept-based Explanation for OOD Detection

Our work: the first method to understand the decisions of an OOD detector in terms of *high-level concepts*

Given DNN classifier, OOD detector, and a set of concepts that sufficiently explain their behaviors.

 Sky Greenary

Concept-based Explanation for OOD Detection

Our work: the first method to understand the decisions of an OOD detector in terms of *high-level concepts*

Observe normal concept activations patterns given ID inputs.

Concept-based Explanation for OOD Detection

Our work: the first method to understand the decisions of an OOD detector in terms of high-level concepts

Given OOD inputs, we observe different concept activation patterns compared to that of ID inputs.

$$\underset{\mathbf{C},\mathbf{g}}{\operatorname{argmax}} \underset{(\mathbf{x},y) \sim P_{\text{in}}}{\mathbb{E}} \left[\log h_y(\mathbf{g}(\mathbf{v}_{\mathbf{C}}(\mathbf{x}))) \right] + \lambda_{\text{expl}} R_{\text{expl}}(\mathbf{C})$$

$$- \ \lambda_{ ext{norm}} \mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{in}}} \| oldsymbol{\phi}(\mathbf{x}) - \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}(\mathbf{x}) \|^2$$

Accurate reconstruction of Z

⇒ high Classification Completeness

$$\operatorname*{argmax}_{\mathbf{C},\mathbf{g}} \underset{(\mathbf{x},y) \sim P_{\text{in}}}{\mathbb{E}} \left[\log h_y(\mathbf{g}(\mathbf{v}_{\mathbf{C}}(\mathbf{x}))) \right] \ + \ \lambda_{\text{expl}} \, R_{\text{expl}}(\mathbf{C})$$

$$- \ \lambda_{ ext{norm}} \mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{in}}} \| oldsymbol{\phi}(\mathbf{x}) - \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}(\mathbf{x}) \|^2$$

$$egin{aligned} &-\lambda_{ ext{mse}} ig(\mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{in}}} ig(S(\mathbf{x}, \mathbf{h} \circ \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}) - S(\mathbf{x}, \mathbf{f}) ig)^2 \ &+ \mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{out}}} ig(S(\mathbf{x}, \mathbf{h} \circ \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}) - S(\mathbf{x}, \mathbf{f}) ig)^2 ig) \end{aligned}$$

Similar OOD detector behavior in both worlds

⇒ high Detection Completeness

$$\operatorname*{argmax}_{\mathbf{C},\mathbf{g}} \underset{(\mathbf{x},y) \sim P_{\text{in}}}{\mathbb{E}} \left[\log h_y(\mathbf{g}(\mathbf{v}_{\mathbf{C}}(\mathbf{x}))) \right] \ + \ \lambda_{\text{expl}} \, R_{\text{expl}}(\mathbf{C})$$

$$-\ \lambda_{ ext{norm}} \mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{in}}} \| oldsymbol{\phi}(\mathbf{x}) - \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}(\mathbf{x}) \|^2$$

$$egin{aligned} &-\lambda_{ ext{mse}} \left(\mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{in}}} \left(S(\mathbf{x}, \mathbf{h} \circ \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}) - S(\mathbf{x}, \mathbf{f})
ight)^2 \ &+ \mathop{\mathbb{E}}_{\mathbf{x} \sim P_{ ext{out}}} \left(S(\mathbf{x}, \mathbf{h} \circ \widehat{oldsymbol{\phi}}_{\mathbf{g}, \mathbf{C}}) - S(\mathbf{x}, \mathbf{f})
ight)^2
ight) \end{aligned}$$

$$+ \lambda_{\text{sep}} J_{\text{sep}}(\mathbf{C})$$

Separability between ID vs OOD inputs in concept space

⇒ high Concept Separability

Results

Concept-based explanations given Inception-V3 classifier and Energy detector:

AwA SUN

Classified to "Buffalo"

How much each concept contributes to the prediction of "Buffalo"?

How much each concept contributes to the detection results for inputs predicted to "Buffalo"?

Energy detector: [Liu et al., NeurIPS'20]

Our Contributions

Our work is the first method for providing concept-based attributions of the decision of an OOD detector based on high-level concepts. Specifically,

- We propose metrics to quantify the effectiveness of concept-based explanation for OOD detection:
 - a. **Detection Completeness**: are the concept scores sufficient statistics for class predictions and OOD detection?
 - b. Concept Separability: are ID and OOD inputs clearly distinctive in terms of concepts?

Our Contributions

Our work is the first method for providing concept-based attributions of the decision of an OOD detector based on high-level concepts. Specifically,

- We propose metrics to quantify the effectiveness of concept-based explanation for OOD detection:
 - a. **Detection Completeness**: are the concept scores sufficient statistics for class predictions and OOD detection?
 - b. Concept Separability: are ID and OOD inputs clearly distinctive in terms of concepts?
- 2. We introduce general concept learning framework that discovers a set of concepts that have good detection completeness and concept separability.

Our Contributions

Our work is the first method for providing concept-based attributions of the decision of an OOD detector based on high-level concepts. Specifically,

- We propose metrics to quantify the effectiveness of concept-based explanation for OOD detection:
 - a. **Detection Completeness**: are the concept scores sufficient statistics for class predictions and OOD detection?
 - b. Concept Separability: are ID and OOD inputs clearly distinctive in terms of concepts?
- We introduce general concept learning framework that discovers a set of concepts that have good detection completeness and concept separability.
- 3. By using the concepts learned by our framework, show how to identify prominent concepts that contribute to an OOD detector's decisions, and provide insights for popular OOD detectors.

Thank you

For the complete description of our work, please check out our paper!

Search...

Computer Science > Machine Learning

[Submitted on 4 Mar 2022]

Concept-based Explanations for Out-Of-Distribution Detectors

Jihye Choi, Jayaram Raghuram, Ryan Feng, Jiefeng Chen, Somesh Jha, Atul Prakash

Out-of-distribution (OOD) detection plays a crucial role in ensuring the safe deployment of deep neural network (DNN) classifiers. While a myriad of methods have focused on improving the performance of OOD detectors, a critical gap remains in interpreting their decisions. We help bridge this gap by providing explanations for OOD detectors based on learned high-level concepts. We first propose two new metrics for assessing the effectiveness of a particular set of concepts for explaining OOD detectors: 1) detection completeness, which quantifies the sufficiency of concepts for explaining an OOD-detector's decisions, and 2) concept separability, which captures the distributional separation between in-distribution and OOD data in the concept space. Based on these metrics, we propose a framework for learning a set of concepts that satisfy the desired properties of detection completeness and concept separability and demonstrate the framework's effectiveness in providing concept-based explanations for diverse OOD techniques. We also show how to identify prominent concepts that contribute to the detection results via a modified Shapley value-based importance score.

Comments: 19 pages, 9 figures

Subjects: Machine Learning (cs.LG); Computer Vision and Pattern Recognition (cs.CV)

Cite as: arXiv:2203.02586 [cs.LG]

(or arXiv:2203.02586v1 [cs.LG] for this version) https://doi.org/10.48550/arXiv.2203.02586