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Standard Machine Learning (ML) Models

ML model in self-driving car
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Out-Of-Distribution Detection

ML model in self-driving car
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Understanding OOD Detection

ML model in self-driving car
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- Our goal:
why this OOD detector detects this image as OOD?
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ML Explanations for Classification

[Type 1] Feature Attributions
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Picture from [Adebayo et al., NeurlPS’20]



ML Explanations for Classification

[Type 1] Feature Attributions
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ML Explanations for Classification

[Type 1] Feature Attributions
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ML Explanations for Classification

[Type 1] Feature Attributions

Input
Grad SGrad SGradSQ VGrad Input-Grad IntGrad EGrad LIME KernelSHAP GBP
Fashion-MNIST : g b ]
Model Pt o " i - 113 ”
] k ? 'r! ,:,.J ) ID
= ‘ No clear,
mIST ¥ s o : % .
odel L4 q" A L .' j.- e I
| R Fioo % b=k visua
. : distinction
BVD-CNN " 2 i 5
Birds-vs-Dogs Model iy ey (R ¢ o y “OOD”
i . p
VGG-16 = & £l | } \ *
| S & P #
ImageNet | 8 ‘;al
! e,

Pixel-level activations might not be the most intuitive form of explanations for humans
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ML Explanations for Classification

[Type 2] Concept-based Explanations

muiL=E-

Cstripe : Concept “Stripe”

\ <¢(X), Cstripe> j [ ’ll ]

[Kim et al., ICML'18;

class "Zebra" Yeh et al., NeurIPS’ZO]



ML Explanations for Classification

[Type 2] Concept-based Explanations

The use of concept-based explanations for OOD detectors
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Concept-based Explanation for OOD Detection

Our work: the first method to understand the decisions of an OOD detector in terms of high-level concepts

Glven DNN classifier, OOD detector, and a set of concepts that sufficiently explain their behaviors.
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Concept-based Explanation for OOD Detection

Our work: the first method to understand the decisions of an OOD detector in terms of high-level concepts

Observe normal concept activations patterns given ID inputs.
OOD Detector
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Concept-based Explanation for OOD Detection

Our work: the first method to understand the decisions of an OOD detector in terms of high-level concepts

Given OOD inputs, we observe different concept activation patterns compared to that of ID inputs.
OOD Detector

... _Classifier :
E :_>IIIDII
—— "Zebra"
Stripe  OvalFace Sky Greenary |
___________ OOD Detector
... Classifier E
| +—"00D"
—— "Zebra"

Stripe  Oval Face  Sky Greenary




'.\
Canonical World Concept World \W’
\ i\ \Vﬁ" \‘v‘,

By ¥ M

Our Method




Our Method
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Canonical World

Our Method
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Results

Concept-based explanations given Inception-V3 classifier and Energy detector:
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Our Contributions

Our work is the first method for providing concept-based attributions of the decision of an OOD
detector based on high-level concepts. Specifically,

1. We propose metrics to quantify the effectiveness of concept-based explanation for OOD
detection:
a. Detection Completeness: are the concept scores sufficient statistics for class predictions
and OOD detection?
b. Concept Separability: are ID and OOD inputs clearly distinctive in terms of concepts?
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2. We introduce general concept learning framework that discovers a set of concepts that have
good detection completeness and concept separability.




Our Contributions

Our work is the first method for providing concept-based attributions of the decision of an OOD
detector based on high-level concepts. Specifically,

1.

We propose metrics to quantify the effectiveness of concept-based explanation for OOD
detection:

a. Detection Completeness: are the concept scores sufficient statistics for class predictions
and OOD detection?

b. Concept Separability: are ID and OOD inputs clearly distinctive in terms of concepts?

We introduce general concept learning framework that discovers a set of concepts that have
good detection completeness and concept separability.

By using the concepts learned by our framework, show how to identify prominent concepts that
contribute to an OOD detector’s decisions, and provide insights for popular OOD detectors.
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Out-of-distribution (OOD) detection plays a crucial role in ensuring the safe deployment of deep neural network (DNN) classifiers. While a myriad of methods have focused on improving the performance of OOD detectors, a critical gap
remains in interpreting their decisions. We help bridge this gap by providing explanations for OOD detectors based on learned high-level concepts. We first propose two new metrics for assessing the effectiveness of a particular set of
concepts for explaining OOD detectors: 1) detection completeness, which quantifies the sufficiency of concepts for explaining an OOD-detector's decisions, and 2) concept separability, which captures the distributional separation between
in-distribution and OOD data in the concept space. Based on these metrics, we propose a framework for learning a set of concepts that satisfy the desired properties of detection completeness and concept separability and demonstrate the
framework's effectiveness in providing concept-based explanations for diverse OOD techniques. We also show how to identify prominent concepts that contribute to the detection results via a modified Shapley value-based importance score.
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